CONJUGATED HEAT TRANSFER IN THE FLOW OF A NON-
NEWTONIAN FLUID WITH VARIABLE PROPERTIES
IN A FLAT DUCT
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We solve the problem of the flow of a nonlinearly viscoelastic fluid in the presence of large
pressure drops and appreciable nonisothermicity.

Many papers which have appeared on fluid dynamics and heat transfer in the flow of non-Newtonian media
in various channels are summarized in detail in [1]. Modeling the flow of such media under conditions of large
pressure drops and appreciable nonisothermicity reduires treating a system of partial differential equations
which cannot be solved exactly. The application of numerical methods hampers the further use of the calculated
results, since finding the temperature and flow rate distributions of a fluid in a practical application is only an
intermediate step on the way to process optimization. So far no papers have appeared in which an analytic solu-
tion for adjoint boundary conditions could take account of the temperature and pressure dependences of the
physical properties and the dissipation of energy and nonlinear viscoelasticity simultaneously. An approxi-
mate analytic solution of this problem for boundary conditions of the first kind was derived by Tyabin et al. [2],
but such heat-transfer conditions are very rarely encountered in real processes.

In the-present article we freat the steady flow of a high-viscosity non-Newtonian fluid in a flat duct with
a constant temperature Tyw on the outer surface. In this case it is necessary to solve the adjoint problem. We
investigate media for which slipping at the wall can be neglected. We assume that the temperature’of the fluid
at the duct inlet is uniform over the cross section and equal to Ty. In accordance with the assumptions made,
which are described in [2], the mathematical mode! of this process can be represented by the following system
of equations:
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The boundary conditions are: x>0, y=h, = = 0, —'E);_ =0;x= t =Ty = const, Ty = ¢(Y),
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x>0, y=H T;,=Ty,= const.

We solve the problem under consideration in the zone of flow by the improved integral method of [3].
The approximate analytic solution employs an auxiliary function A(X) which varies from 0 to 1, has no physical
significance, and satisfies the condition
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where & (Ts) =0 is a nonlinear operator, in general form equivalent to the energy equation (2). It was shown
in a number of papers [4-6] that the effect of dissipative heating on the temperature profile increases with an
increase in the reduced length; i.e., for larger Gratz numbers perturbations of the temperature distribution
will occur only near the wall. Therefore, at the first step the second term in Eq. (10) can be neglected, and
in the range 0 = Y = A the temperature profile is specified by a polynomial of arbitrary degree
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with coefficients which are functions of the longitudinal coordinate and are found from the boundary conditions
and supplementary imposed consfraints. In this case A(X) is understood as the approximate thickness of the
thermal boundary layer. Restricting ourselves in the first approximation to a second-degree polynomial, we
have
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In this equation we have introduced the unknown temperature @ of the inner wall of the duct to satisfy the first
matching condition. '

By using Egs. (5), (6), and (12}, and averaging the inertial term and the normal stresses over the cross
section of the duct in the equation of motion, we obtain expressions for the velocity profile
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where B; = B;(4) [1].

Substituting Eqs. (12)-(14) into the energy equation, and integrating from 0 to A, we obtain an ordinary
first-order differential equation whose solution enables us to determine A = A(X) under the condition that A =0
at X =0
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The Dj are given arithmetic functions [1].

Equation (15) can be solved by various familiar methods. We performed the integration by the Picard
method, using Simpson's rule.

In order to find the unknown temperature @,(X) it is necessary to examine the temperature distribution
on the plane wall of the duct. It is known that the exact solution of Laplace's equation (4) by the Fourier method
can be written as an infinite sum of elementary solutions

0:= X 0n () /2 (X). (16)

Theoretical calculations and experimental data in [7, 8] show that for similar boundary conditions and a
high thermal conductivity of the duct wall the temperature distribution in various cross sections is nearly
linear; i.e., the temperature profiles are nearly similar. In this case the series (16) converges rapidly; the
effect of subsequent terms decreases sharply in comparison with the preceding terms. Therefore, the tem~
perature distribution on the wall can be represented approximately as the product of the first eigenfunctions

0= 01 (V) 1 (X). (17)

The last assumption, independently of the parameter R and the flow conditions, is valid also when the duct
wall is thin enough [9].

The function 4)15{) is found by solving the Sturm —Liouville problem afier substituting (17) into Laplace's
equation @] + Aqpq = 0. The eigenfunction ¢, and the first eigenvalue A, are found by the Ritz method {10],
which determines ¢ to within a constant.

Thus, the temperature profile is
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Using the first matching condition we obtain for Y=o
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It follows from the second matching condition that
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After this the temperature and velocity distributions in the flowing fluid in the initial thermal region are com-
pletely determined. Using these analytic expressions it is easy to find the local Nusselt numbers or the hy-
draulic resistance.
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Fig. 1. Temperature variation lengthwise along
inner wall of duct: 1) R =5; 2) 10; 3) 20.

The solution obtained above by the ordinary integral method can be considered only as the first approxi-
mation.

If refinement is necessary, according to the Yang scheme the solution of Eq. (15) can be substituted into
the initial energy equation, which, after a coordinate transformation [2] goes over into an ordinary second-order
differential equation
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where Z(A, n) and Q(A, n) are given functions [2]. For the boundary conditions
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Eq. (20) can be solved by quadrature
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The solution in the range A = Y = 1 for the boundary conditions

is sought in a similar way.

If the temperature gradient at the wall is calculated from Eq. (22), a refined value of the local Nusselt
number can be determined.

Using the analytic relations obtained, estimates were made of the effects of various factors on the basic
laws of heat transfer and resistance for the flow of rheologically complex media in ducts. They were analyzed
in detail for boundary conditions of the first kind in [2, 11].
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Figure 1 shows the variation of the dimensionless temperature lengthwise along the inner wall of the
duct for various values of the parameter R characterizing the ratio of the thermal resistances of the fluid and
wall. Such calculations help to estimate the conditions under which the variation of the wall temperature is
negligible and can be limited by boundary conditions of the first kind.

Thus, we have obtained an approximate analytic solution of the problem of the flow of a nonlinearly vis-
coelastic fluid with variable physical properties in a flat duct for adjoining boundary conditions which gives a
complete description of the temperature, velocity, and pressure distributions, and can be used in design and
technical calculations of equipment used to receive and process non-Newtonian media.

NOTATION

v, Tg, Velocity and temperature of stream; Tg, temperature of duct wall; x, longitudinal coordinate; y, v,
transverse coordinates in stream and on wall, respectively; A, and cp, thermal conductivity and specific heat
at atmospheric pressure; &, coefficient of thermal expansion; p, hydrostatic pressure; Ky, consistency con-
stant at temperature Ty, and atmospheric pressure; s, pressure coefficient of viscosity; n, flow index; b and b',
temperature coefficients of viscosity and first difference of normal stresses; bj, Fourier expansion coeffi-
cients of exponential in series of orthogonal Chebyshev polynomials; hy, half-height of duct; 8,, coefficient of
normal stresses; £; and y;, empirical constants necessary to approximate experimental data with any_degEee
of accuracy; p , density of fluid; H, thickness of ductwall; a, thermal diffusivity; X = x/hp Y =y/hg Y =y/hy
A=06/Mmgn=Y/8 0= (T~ Tw)/(Ty= Ty V =v/vi m =1/n; Ci)k =cp/ Cpps A* =A/Ngr R =Ag/Af - hy/H;

A" =dA/dX; Pe = Vhy/ag Br = [Ky w2 H] /A e(T) = Ty)hB 1 Brs = [8;v /(T — Ty AT = Tp — Ty,

LITERATURE CITED

1. A.YV. Baranov, "Development of methods of calculating optimal flow regimes of non-Newtonian media
with variable physical properties in ducts," Candidate's Dissertation, Kalinin Polytechnic Institute (1982).
2. N.V. Tyabin, O. Kh. Dakhin, V. A. Gerasimenko, and A. V. Baranov, "Laws of nonisothermal flow of
composite materials in ducts," Mekh. Kompozitn. Mater., No. 6, 1061-1067 (1981).
3. T.Gudmen, "Use of integral methods in nonlinear heat~transfer problems,” in: Heat-Transfer Problems
[in Russian], Atomizdat, Moscow (1967), pp. 41-95.
4, @G. B. Froishteter and E. L. Smorodinskii, "Effect of the dissipation of kinetic energy on heat transfer in
laminar flow of non-Newtonian fluids in tubes," Inzh.-Fiz. Zh., 18, 68-76 (1970).
N. V. Tyabin, V. V. Shishlyannikov, O. Kh. Dakhina, and R. V. Torner, "Heat transfer in the flow of molten
polymers in a circular duct," in: Heat Transfer, Soviet Research [in Russian], Nauka, Moscow (1976,
pp. 195-198.
6. Weén Chin-L18i, Effect of Viscous Dissipation on Heat-Transfer Parameters in Flow between Parallel
Plates [Russian translation], VT'sP, Moscow (1979), p. 19.
7. A, A. Ryadno, "Approximate solution of adjoint steady-state problem of heat transfer in laminar flow of
non~Newtonian fluids in a flat slot," Izv. Vyssh. Uchebn. Zaved., Energ., 4, 73-78 (1978).
8. 8. Mori et al., "Conjugated heat transfer to laminar flow with internal heat source in a parallel plate
channel." Can, J. Chem. Eng., 57, 698-703 (1979).
9. A. V. Lykov, "Adjoint problems of convective heat transfer," in: Problems of Heat and Mass Transfer
{in Russian], Nauka i Tekhnika, Minsk (1976), pp. 83-89.
10. L. V. Kantorovich and V. I. Kyrlov, Approximate Methods of Higher Analysis, Wiley, New York (1964).
11. N. V. Tyabin, O. Kh. Dakhin, and A. V. Baranov, "Influence of temperature and pressure on the flow of
rheologically complex media in a plane channel,” Teplofiz. Vys. Temp., 20, 81-87 (1982).

(9]

983



