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We solve the problem of the flow of a nonlinearly viscoelas t ic  fluid in the presence  of large 
p r e s s u r e  drops and appreciable nonisothermiei ty .  

Many papers  which have appeared on fluid dynamics and heat t r ans fe r  in the flow of non-Newtonian media 
in various cham~els are  summar ized  in detail in [1]. Modeling the flow of such media under conditions of large 
p re s su re  drops and appreciable nonisothermici ty  requires  t reat ing a sys tem of part ial  differential equations 
which cannot be solved exactly.  The application of numer ica l  methods hampers  the fur ther  use of the calculated 
resul ts ,  since finding the t empera tu re  and flow rate distributions of a fluid in a pract ical  application is only an 
intermediate  step on the way to p rocess  optimization. So fa r  no papers  have appeared in which an analytic solu-  
tion for  adjoint boundary conditions could take account of the tempera ture  and p re s su re  dependences of the 
physical  proper t ies  and the dissipation of energy and nonlinear v iscoelas t ic i ty  simultaneously.  An approxi-  
mate analytic solution of this problem fo r  boundary conditions of the f i r s t  kind was derived by Tyabin et al. [2], 
but such hea t - t r ans fe r  conditions are  very  r a re ly  encountered in real  p roces se s .  

In the,present  ar t ic le  we t rea t  the steady flow of a h igh-viscosi ty  non-Newtonian fluid in a flat duct with 
a constant t empera tu re  Tw on the outer surface.  In this case  it is neces sa ry  to solve the adjoint problem. We 
investigate media for  which slipping at the wall can be neglected.  We assume that the t empera tu re  of the fluid 
at the duct inlet is uniform over  the c ross  section and equal to T o . In accordance with the assumptions made, 
which are  descr ibed in [2], the mathemat ica l  model of this p rocess  can be represented  by the following sys tem 
of equations: 
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x ~ O, g =  H T~ = T w = const. 

We solve the p rob lem under  considerat ion in the zone of flow by the improved  integral  method os [31. 
The approximate  analytic solution employs  an auxi l iary  function A(X) which va r i e s  f r o m  0 to 1, has no physica l  
s ignif icance,  and sa t i s f ies  the condition 
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where s =0  is a nonl inear  opera tor ,  in genera l  f o r m  equivalent  to the energy  equation (2). I t  was  shown 
in a number  of paper s  [4-6] that  the effect  of d iss ipa t ive  heating on the t e m p e r a t u r e  prof i le  i nc rea se s  with an 
inc rease  in the reduced length; i .e. ,  fo r  l a r g e r  Gra tz  number s  per tu rba t ions  of the t e m p e r a t u r e  dis t r ibut ion 
will occur  only n e a r  the wall .  The re fo re ,  at the f i r s t  s tep the second t e r m  in Eq. (10) can be neglected,  and 
in the range 0 <_ Y _ A the t e m p e r a t u r e  prof i le  is spec i f ied  by a polynomial  of a r b i t r a r y  degree  

OS = do -k A y  + A2Y ~ + . . . + A , y  n, (11) 

with coefficients which a r e  functions of the longitudinal coordinate and a re  found f r o m  the boundary conditions 
and supp lementa ry  imposed  cons t ra in ts .  In this case  A(X) is unders tood as the approx imate  th ickness  of the 
t h e r m a l  boundary layer .  Res t r ic t ing  ourse lves  in the f i r s t  approximat ion  to a second-degree  polynomial ,  we 
have 

O] = Oo -k 2 (1 - -  Oc) ~ - -  (1 - -  Or) (12) 

In this equation we have introduced the unknown t e m p e r a t u r e  | of the inner wall of the duct to sa t i s fy  the f i r s t  
matching condition. 

By using Eqs.  (5), (6), and (12), and averag ing  the iner t ia l  t e r m  and the no rma l  s t r e s s e s  ove r  the c r o s s  
sec t ion  of the duct in the equation of motion,  we obtain express ions  for  the veloci ty prof i le  

9 

1 Z B~ [(1 - -  Y)"*+~-- 1], 
v ( Y < A )  = 7 m ~  i 

i = l  

9 

V(Y  ~ 5 ) =  - ~  { Z  Bi [ ( l -  A) r e + i -  l] + 
m-t- i 

i = I  

+t [ KWKoi "~"~ rn +'------Ti l (1- j)rn-}-I --( l -  y)m+l 1}, 
9 

( K~, "~'~ 1--A s B, il__(l__A).~+,+,l, 
A = \ - ~ o  ] m + 2  ,=, m 4 : - i + l  

(13) 

(14) 

where B i = Bi(5) [1]. 

Substituting Eqs.  (12)-(14) into the energy  equation, and integrat ing f r o m  0 to A, we obtain an ord inary  
f i r s t - o r d e r  differential  equation whose solution enables  us to de te rmine  A = A(X) under  the condition that A = 0 
at X =0:  
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where the functions F I and F 2 are given in [2], and 

GB~ 
9 - -  q-Di 

F3 Br* 1 { E  A 
p ~  A~'+ ~ (ra + i) (m § ran' + i § 1) • 

i=l 
GBi 

- - +  Di 
A 

(m + i) (ran' + 1) X 

(15) 

~* 4(1--Oc) , 
•  ~ '+~ ] ; F~-- Pe A ' 

9 9 
Dz [ 1 - - ( l - - A )  '~+~+~] § B~(1--A)~+~+ ~ ( I - -A) .  

G= m + i + l  
i ~ l  ~--I 
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Equation (15) can be solved by var ious  f a m i l i a r  methods .  We p e r f o r m e d  the in tegrat ion by the P i ca rd  
method,  using S impson ' s  rule .  

In o rde r  to find the unknown t e m p e r a t u r e  @c(X) it is n e c e s s a r y  to examine the t e m p e r a t u r e  dis tr ibut ion 
on the plane wall  of the duct. It is known ~ a t  the exact  solution of Lap lace ' s  equation (4) by the F o u r i e r  method 
can be wri t ten  as an infinite sum of e l emen ta ry  solutions 

Os - ~ % (Y) f~ (X). (16) 

Theore t ica l  calculat ions and exper imenta l  data in [7, 8] show that fo r  s i m i l a r  boundary conditions and a 
high t he rma l  conductivity of the duct wall the t e m p e r a t u r e  dis tr ibut ion in var ious  c r o s s  sect ions  is near ly  
l inear ;  i .e. ,  the t e m p e r a t u r e  prof i les  a re  nea r ly  s i m i l a r .  In this case the s e r i e s  (16) converges  rapidly;  the 
effect  of subsequent  t e r m s  d e c r e a s e s  sharp ly  in compar i son  with the  preceding  t e r m s .  There fo re ,  the t e m -  
p e r a t u r e  dis t r ibut ion on the wall  can be r e p r e s e n t e d  approx imate ly  as the product  of the f i r s t  eigenfunetions 

o~ = % (Y) h (x). (17) 

The las t  assumpt ion ,  independently of the p a r a m e t e r  R and the flow conditions, is valid a lso  when the duct 
wall is thin enough [9]. 

The function ~ot(~ r) is found by solving the S t u r m - L i o u v i l l e  p rob lem a f te r  substi tuting (17) into Lap lace ' s  
equation qh + klqPI = 0. The eigenfunetion ,~1 and the f i r s t  eigenvalue ;t 1 a re  found by the Ritz method [10], 
which de t e rmines  qh to within a constant .  

Thus, the t e m p e r a t u r e  prof i le  is 

Os = k. ( 1 -  5 Y ' +  1 1~2 ) fl(X ), 

Using the f i r s t  matching condition we obtain fo r  Y -- 0 

Os = Oc = kf (X) .  

It follows f r o m  the second matching condition thag 

(18) 

o: 2 (19) 
2 + 5 ~ A  

4 

After  this the t e m p e r a t u r e  and veloci ty  d is t r ibut ions  in the flowing fluid in the  initial t he rma l  r eg ion  a r e  c o m -  
ple te ly  de te rmined .  Using these  analytic expres s ions  it is easy  to find the local Nussel t  numbers  or  the hy-  
draul ie  r e s i s t ance .  
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Fig. 1. 
inner wall of duct: 

- ~ . ._______ 

z7 2g 4'O X 

Tempera ture  variat ion lengthwise along 
1) R = 5; 2) 10; 3) 20. 

The solution obtained above by the ordinary integral method can be considered only as the f i r s t  approxi-  
mation. 

If refinement is necessa ry ,  according to the yang scheme the solution of Eq. (15) can be substituted into 
the initial energy equation, which, af ter  a coordinate t ransformat ion  [2] goes over  into an ord inary  second-o rde r  
differential equation 

dO s Z* d~Ot +Z(A,  ~) = Q(A, % 
A~Pe drl2 d~-- 

where Z(A, 7) and Q(A, 7) are  given functions [2]. For  the boundary conditions 

~ 1 = 0  O ] = O ~ ,  ~1=  1 O f =  1 

Eq. (20) can be solved by quadrature 
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(22) 

The solution in the range A _ Y - 1 for  the boundary conditions 

1 1 dOy 
~q---1 O f = l ,  n 0 

A A dq 

is sought in a s imi la r  way. 

If the tempera ture  gradient  at the wall is calculated from Eq. (22), a refined value of the local Nusselt  
number  can be determined.  

Using the analytic relations obtained, es t imates  were made of the effects of various fac tors  on the basic 
laws of heat t r ans fe r  and res is tance  for  the flow of theological ly complex media in duets. They were analyzed 
in detail fo r  boundary conditions of the f i r s t  kind in [2, 11]. 
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Figure 1 shows the variation of the dimensionless temperature lengthwise along the inner wall of the 
duct for various values of the parameter R characterizing the ratio of the thermal resistances of the fluid and 
wall. Such calculations help to estimate the conditions under which the variation of the wall temperature is 
negligible and can be limited by boundary conditions of the first kind. 

Thus, we have obtained an approximate analytic solution of the problem of the flow of a nonlinearly vis- 
coelastic fluid with variable physical properties in a flat duct for adjoining boundary conditions which gives a 
complete description of the temperature, velocity, and pressure distributions, and can be used in design and 
technical calculations of equipment used to receive and process non-Newtonian media. 

NOTATION 

v, Tf, Velocity and temperature of stream; T s, temperature of duct wall; x, longitudinal coordinate; y, 7, 
transverse coordinates in stream and on wall, respectively; ~0 and Cp0, thermal conductivity and specific heat 
at atmospheric pressure; s, coefficient of thermal expansion; p, hydrostatic pressure; Kw0, consistency con- 
stunt at temperature T w and atmospheric pressure; s, pressure coefficient of viscosity; n, flow index; b and b', 
temperature coefficients of viscosity and first difference of normal stresses; b i, Fourier expansion coeffi- 
cients of exponential in series of orthogonal Chebyshev polynomials; h0, half-height of duct; fit' coefficient of 
normal stresses; $ i and i/j, empirical constants necessary to approximate experimental data with any degree 
of accuracy; p, density of fluid; H, thickness of ductwall; a, thermal diffusivity; X = x/h0; Y =Y/h0; Y =~/h0; 

A = d/h0; ~ =Y/A; | = (Tf-Tw)/(T0-Tw);V =v/~; m =l/n; c* =co/Cpo; k*=Tt/k0;.R =ks/~ f.h 0/H; 
~' = dA/dX; Pe = v-h0/af; Br = [Kw0 Vn+i] / [Xf(T 0 - Tw)hn-i]; Br *~= [fiijn+l]/[kf(T 0 - Tw)h0n-i]; AT Tf - T w. 
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